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Abstract 

Lockheed Martin InVision provides software renovation and sustainment services, including 
analyzing systems for “interesting features,” transforming systems to new environments, and 
recasting systems to new architectures and languages. We seek an optimal blend of effort by 
automating the straightforward parts of a reengineering task under human control. We achieve 
this automation through a judicious combination of artificial intelligence and compiler-
compiler techniques. This paper describes the InVision tool set and reengineering process and 
presents some examples of the applications of this technology. 

1. Introduction 

Every software manager knows better than to lightly discard an existing software system. Such 
systems not only form the backbone of existing enterprises, but also embody critical knowledge 
about the actual processes of an application or organization. Legacy software is an asset. On the 
other hand, new operating conditions, new markets and emerging technologies are tempting 
occasions for improvement. These opportunities motivate modernizing software from out-of-
date hardware to contemporary processors; from ancient or obscure languages, databases, and 
interfaces to current standards; and from centralized, closed systems to modern distributed, 
enterprise-wide open architectures. Software managers face the problems of preserving exist-
ing software assets and ensuring the continuing smooth operation of the organization while 
nevertheless responding to new requirements and taking advantage of emerging capabilities. 

Modernization possibilities include buying commercial, off-the-shelf (COTS) software to 
provide a particular function (and then integrating it into the existing environment), redevelop-
ing a system from scratch, or renovating (reengineering) an existing system to conform to new 
requirements. Each of these has its advantages and disadvantages. COTS software, if available, 
affordable, and appropriate can be a straightforward modernization technique. However, 
rarely are all these criteria met. Redevelopment offers the opportunity to radically update func-
tionality, with concomitant high expense and risk. Reengineering seeks to take advantage of the 
knowledge embodied in existing systems to economically and reliably achieve modernization. 
(In practice, most projects use a hybrid approach, employing appropriate COTS components 
when available, redeveloping systems that require radical change, and reworking the rest.) 

Lockheed Martin InVision provides software reengineering services to commercial organi-
zations, to the government and government contractors, and within Lockheed Martin. These 
services include analyzing systems for “interesting features,” transforming systems to new en-
vironments, and recasting systems to new architectures and languages. InVision seeks an opti-
mal blend of effort by automating the straightforward parts of reengineering under human 
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guidance and control. (The computer system thus acts as an “apprentice” to the human expert.) 
This combination of human domain understanding with computer attention to detail produces 
an overall superior reengineering result. InVision achieves this optimum by (1) developing and 
acquiring a collection of tools for the flexible analysis and transformation of existing systems, 
and (2) providing these tools to engineers skilled in the tool operation and modification, and 
knowledgeable in the source-and-target languages and environments. Artificial intelligence 
techniques and mechanisms play a prominent role in InVision’s tool set. 

This paper describes the InVision tool set and some of the applications it has enabled. Sec-
tion 2 describes some of the uses of software renovation techniques. In Section 3, we turn to 
describing our tools and their use. We have applied our tools to a variety of applications, span-
ning tasks in program analysis and transformation. Section 4 presents a more detailed dis-
cussion of several renovation projects and research efforts. We briefly compare this work with 
other software reengineering efforts in Section 5. We close with a few remarks on the nature of 
semi-automated software reengineering. 

2. Uses of Software Renovation 

Broadly, software renovation can be used for analysis and transformation. Analysis describes the 
state of an existing software system. This information can be applied to maintenance, migra-
tion, and/or later transformation. The output of analysis can range from a static set of text re-
ports, to node and edge graphs and on through an interactive query/browsing tools. Trans-
formation is the process of modifying an existing system to meet the demands of a changing 
environment. The output of transformation is the original program rephrased in an alternative 
dialect or language, hosted on a different operating system and/or interfaced to a different op-
erating environment.  

Examples of useful analyses include: 

(1) Cross references. These include calling-trees—which program elements invoke which 
other program elements, and set/use–reports—which data locations are accessed or modi-
fied by which other components. 

(2) Data and control flow. Data and control flow reports show the progression of data val-
ues or overall system control through a system. Uses of control and data flow infor-
mation include establishing the business rules of a system, enabling restructuring of a 
system, anticipating the effect of changes to data structures and values, and identifying 
dead (unreachable) code. 

(3) Software metrics. Software metrics can be generated that suggest the difficulty of main-
taining a particular software component. 

(4) Standards violations. Legacy systems were often developed without coding standards. 
Modern developers often fail to follow standards. Violations may include use of lan-
guage constructs beyond the standard language (for example, custom extensions to 
FORTRAN or K&R C function declarations) or outside the stylistic standards of the or-
ganization (for example, GOTO statements or multiple returns from a subprogram). It is 
possible to analyze the program structure to determine standards violations. Frequently, 
such a system can suggest or implement changes to make the code compliant. 

(5) Inventory analysis. Rarely can the owners of a large application system identify all the 
source components. Reporting mechanisms can identify missing, unreachable, or re-
dundant modules. 

(6) System dependencies. An important element of software reengineering is identifying 
those places where the code invokes system-dependent routines. Thus, in porting from 
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one operating system to another, it may be critical to identify calls to the first operating 
system’s native routines. 

Typical applications of program transformation include: 

(1) Programming language translation. This includes moving systems from a non-standard 
or moribund language (for example, Jovial or CMS2) to a modern standard (for exam-
ple, Ada), from older dialects (for example, FORTRAN IV or COBOL68) to modern vari-
ants (for example, FORTRAN 77 or COBOL II), and from proprietary systems (for ex-
ample, proprietary 4GLs) to an open environments like C and COBOL. Much of (but, for 
a quality result, by no means all) such transformations can be accomplished auto-
matically. 

(2) Replatforming. Often, the nominal language of a system remains the same, while other 
elements of its environment (for example, hardware, language dialect, compiler, data-
base system, or graphic user interface) need to be changed. 

(3) Remodularization. Even systems with sound architectures erode under the muddling 
force of maintenance, and not every system has had the benefit of an architecturally or-
ganized youth. By examining the interconnectivity of system components, it is possible 
to recommend more appropriate modularizations of those components. Remodular-
ization can serve as a prelude to programming language translation, as an appropriate 
organization for one language may be a poor structure for another. 

(4) Generalization and reuse. Programmers often create application code in a hurry. Near 
the end of a project or during maintenance, it is often more expedient to copy and edit 
an old routine than to modify the original to be more general. However, the result of 
compounding such behavior is many copies of "almost the same" code in a system. Simi-
larly, for large systems separate component implementations often arise from a lack of 
global perspective. It is possible to recognize certain kinds of redundancy and produce a 
generalized, reusable version of redundant code, thereby reducing overall system size. 

(5) Uniformly insert behavior. Transformation can be used to uniformly insert behaviors 
(for example, debugging or metering mechanisms) into a system. 

Before transformation, a skilled reengineer must analyze the system and determine the most 
cost-effective transformation strategy. Software reengineering projects must strike a delicate 
balance between the cost of developing automated tools and the cost of performing a task 
manually. Additional automation is worthwhile only if its development costs can be amortized 
over the available reengineering tasks. For example, developing rules for converting function 
pointers in C to Ada83 requires substantial effort. (In the most general case, it may not be pos-
sible to create a faithful rendition of every C function pointer in Ada.) An appropriate strategy 
uses automation to trace through the C inventory to identify function pointers and their uses, 
but leaves to the software reengineer the choice of implementation mechanism in the translated 
program (for example, generics or case-statements). 

3. Automation 

Realistic reengineering efforts must be based on actually examining the system to be reengi-
neered.1 For that reason, we base our tools on reading code, job control language, and data 
definition language (and other such program descriptions) into an internal representation, and 

                                                           
1 Though the original project may have created copious documentation, documentation lies. Because 

documentation effort has not tracked the system maintenance, and because the original documentation 
was incorrect or incomplete, old documentation is, at best, suspect. In practice, this is often a moot 
point; documentation for legacy systems is usually nonexistent. 
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then manipulating that internal form. A knowledgeable software reengineer directs and con-
trols this process. It is best if the internal representation both reflects the structures and rela-
tionships of the program and is amenable to facile programmatic manipulation. Once in inter-
nal form, programs can be written to analyze and report on the program structures, and to 
transform these structures (for example, a representation of the same program in another lan-
guage). These reports and transformed programs can then be examined or printed out for use 
by software reengineers or for inclusion in the final system. Figure 1 illustrates this basic proc-
ess: (a) parsing to an internal representation, (b) annotating that representation with informa-
tion inferred about the program, (c) manipulating and transforming that representation, and 
then (d) presenting the results of those manipulations and transformations. 

Code
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Parser

Graph
Builder

Internal
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Language
Descriptions

Reporters
Browsers

Analyses

Transformers

Translations

Symbolic programming
environment

 

Figure 1: InVision system architecture 

 

Our primary tool environments have been Common Lisp (Steele, 1990) and Lisp enhanced with 
Refine (Reasoning Systems, 1990).2 We have augmented those environments with both general 
and application-specific tools; we discuss some of those tools below. Technologically, we can be 
understood as combining compiler-compiler algorithms (e.g., compiler-compilers, regular-
expression lexers, control and data flow) with artificial intelligence mechanisms (symbolic rep-

                                                           
2  Refine is an application development environment that extends Common Lisp with (1) a very high-

level programming language that combines imperative, functional, logic and pattern-directed pro-
gramming, (2) an object system, (3) a yacc-like system for defining the syntax of programming lan-
guages, automatically constructing LALR(1) parsers for those languages, and using those parsers to 
construct object-based abstract syntax trees of programs, and (4) a GUI-builder. Reasoning Systems 
also provides “language workbenches” (language models, parsers, and certain pre-defined analyses) 
for Ada, C, COBOL and FORTRAN. 



 5 

resentation, objects and models, multi-dimensional objective functions and pattern-directed 
inference.) 

3.1. Models and Grammars 

In the introduction to this section, we discussed creating an internal representation of a pro-
gram. The transition from program text to internal representation has two critical components:  

(1) The domain model. A domain model is a framework for representing programs. We re-
alize this framework as a set of class definitions. The slots of such classes encode the 
subparts of the program. Such a model recognizes the semantically common elements of 
the program, classifying them in an inheritance hierarchy. Thus, a language may be built 
of “sentences,” including both “data sentences” (declarations) and “executable sen-
tences” (statements). The executable sentences may divide into I/O sentences, iteration 
sentences, assignment sentences, and so forth. One seeks in this hierarchy comprehensiv-
ity (the entire language is described), proximity (similar conceptual elements share close 
common ancestors) and utility (operations can be described in relatively few places). As 
a concrete complexity measure of domain models, we consider CMS-2Y. CMS-2Y is an 
Algol-like language popular for U. S. Department of Defense applications. Our CMS-2Y 
domain model is eight levels deep, contains 308 classes and 215 “abstract-syntax tree de-
fining” attributes. Our primary vehicle for expressing domain models has been the Re-
fine object system. We have also explored expressing models in the Common Lisp Ob-
ject System (CLOS). 

(2) The parser. Program text needs to be recognized and encoded in the internal representa-
tion. This process has three critical steps: lexing (breaking the input into words), parsing 
(recognizing the sentences and parts of speech of the input and roughly assembling 
them into a program representation), and fixup (rearranging the results of parsing into a 
proper model, including establishing the declarative connection between program ele-
ments and restructuring odd organizations encumbered by particular parsing al-
gorithms). The end-product of this process is the representation of the program as an ab-
stract-syntax tree (AST). Figure 2 shows the AST representation of a parse of a (pseudo-
language) conditional statement. 
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Figure 2: An abstract syntax tree representation of  
“if A < B + C then X := Y / Z else X := F (A, B, C)” 

We have, by and large, used Refine for parsing and initial object construction, including both 
the predefined Refine workbenches (C, COBOL, FORTRAN, and Ada) and those additional 
workbenches we have constructed (for example, Jovial J3 and J73, CMS-2M and -2Y, InfoBasic, 
IMS-COBOL, IBM-370 assembler, IBM-370 JCL). Limitations in the size of system that can be 
accommodated by the “in memory” Refine environment have also led us to develop tools for 
transferring program representations between Refine objects and CLOS, and to storing pro-
gram representations in a CLOS-based object-oriented database (Franz Allegrostore). 

3.2. Annotation 

We observe that the abstract syntax tree (AST) created by the parsing process approximates an 
appropriate internal representation for reengineering.3 However, treating the nodes of the AST 
as simple record structures is too confining. Instead of tree nodes, a better representation cre-
ates objects that (1) can take additional annotation about inferred facts about the program, (2) 
can be grouped into classes and inheritance hierarchies to conveniently describe common 
properties, and (3) can be objects for object-oriented programming. 

Since the grammar now defines both the syntactic structures of the language and its object 
classes and hierarchy, grammatical design for an object-oriented system requires additional 
care. Making the class hierarchically be semantically meaningful simplifies further processing: 
behaviors can be defined for all elements of a class. 

                                                           
3 Sometimes, the best structure for parsing is not precisely the best structure for reengineering. For ex-

ample, in many languages a function call with arguments is syntactically indistinguishable from an ar-
ray reference. But for much of further processing (for example, variable set/use, and tracing subpro-
gram calls) these are very different creatures. In such situations, it is useful to insert a transformational 
step, either immediately after parsing or after symbol table creation, that transforms the “readily 
parsed” representation to an “easily manipulated” one. 
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Having represented the program as a network of objects, we can annotate those objects 
with additional information. Typical attributes include symbol-table references (for example, 
variable references pointing to their declarations), control-flow information (for example, 
statements pointing to those statements that can execute immediately after them), and data-
flow information (for example, assignments pointing to those parameter and data values that 
went into their computation.) We call such an annotated structure an abstract syntax graph 
(ASG). As objects, the elements of the graph are amenable to object-oriented programming. 

3.3. Analysis and Transformation 

The two primary ways of manipulating ASGs are rule-based and object-oriented programming. 
Rules allow the straightforward description of relationships among (perhaps physically dis-
tant) elements and a similarly direct expression of what to do when discovering such relation-
ships. However, rules are non-deterministic; pattern-matching can be obscure, making, rule-
based systems can be difficult to debug. Object-oriented programming allows focusing behav-
ior on individual kinds of elements, thereby providing the same interface to different classes of 
behaviors. On the other hand, it is more difficult to describe actions that relate a collection of 
typed objects with object-oriented programming. Each has its place in the reengineer’s tool kit. 

Analyses and transformations generate different kinds of results. Most commonly, analyses 
produce reports. A search of the ASG determines the data for reports. Straightforward routines 
can convert these to either tabular or graphical form. Program transformation produces the 
textual representation of a program equivalent to the original in a different language or dialect. 
One way of accomplishing this is through object-oriented programming: having the objects of 
the ASG respond to messages telling them how to represent themselves in the new language 
(e.g., “Yo. You, COBOL if statement. Print yourself out in Ada.”) Alternatively, program trans-
formation can create an AST in the target language. This AST can be made either by transform-
ing the source ASG or by constructing a parallel AST. A grammar in the target language can 
then be "run backwards" to print this tree in the target language. (We have found it useful to 
annotate this target grammar with pretty-printing information, and have developed a pretty-
printer for these annotations.) Figure 3 illustrates the abstract syntax tree transformations per-
formed by a rule for transforming a COBOL multiple assignment statement to a sequence of 
Ada assignment statements. Figure 4 shows the text of a rule for making the implicit length of 
an assembly language instruction explicit. This rule uses the Refine grammatical pattern lan-
guage, where fragments of textual programs are combined with pattern variables to express 
structure. 
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COBOL: MOVE 1 TO W1, W2

Ada: W1 := 1; W2 := 1;

( )

Figure 3: Structural transformation from COBOL to Ada  
 
 

rule make-length-explicit (x : defined-storage) 
 x = ‘##r BALP @n @(typ) L @l < $(exas) >’ 
 & undefined? (l) 
 & typ in [’C, ’P, ’Z, ’X, ’B] % variable-length types 
 & exas = [exa, ..] 
 & len = bal-byte-length(typ, exa) 
 --> x = ‘##r BALP @n @(’C) L @(len) < $([]) >’ 
 

Figure 4. A rule to make the implicit length of an assembler instruction explicit. 
 

Building and using symbol tables provides an occasion to illustrate the use of object-
oriented programming in reengineering. We first observe that many languages support some 
flavor of lexical scoping. This suggests organizing lexical contexts in a tree-structure, starting at 
some (global) root and creating child nodes at those places that allow new declarations. Finding 
an element in such a structure involves searching the current leaf node, and, if not found, re-
cursively search up the tree towards the root. Languages may have other restrictions on sym-
bols. Object-oriented techniques allow us to build lexical contexts that obey other disciplines. 
Second, languages typically manipulate multiple varieties of symbol tables. For example, a lan-
guage may have one table for its variables, subprograms and type identifiers and another for 
statement labels. In such languages, it is perfectly legal to declare, say, a variable with the same 
name as a label. Usage (one doesn't “go to” a variable or increment a label) clarifies which vari-
ety of symbol is being referenced. 

We use the term lexical context to refer to a collection of name spaces in a program. Given 
the above observation about different uses of the same name, any given lexical context may 
have a number of symbol tables, one for each name space in the programming language. We call 
an item in a symbol table a symbol table entry, or s-t-e for short. The fields of an s-t-e vary among 
languages. The three critical operations on lexical contexts are then: 

(1) Given a symbol, a name space, and an s-t-e, add that <symbol, s-t-e> to the appropriate 
name space/symbol table. 
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(2) Given a symbol and a name space, lookup that symbol in the appropriate symbol table, 
returning the s-t-e, if any. 

(3) Given a lexical context, create a child lexical context. 

Object-oriented programming techniques allow us to declare a class of lexical contexts that im-
plement these in a particular way (e.g., lexical contexts as a collection of symbol tables; symbol 
tables as hash arrays; lookup through sequential search up the lexical context tree). A different 
language specification might suggest a different organization for lexical contexts. Providing 
different method handlers permits the transparent use of alternative implementations by the 
rest of the system. 

We note three interesting messages for the objects of the parse graph: 

(1) What new s-t-e’s do you have to contribute to the symbol table? 

(2) What item of the symbol table do you use? 

(3) Do you create a new (child) lexical context? 

Most classes of parse objects respond negatively to these questions, but certain nodes (e.g., vari-
able declarations, identifiers in expressions, and declare/begin/end blocks) require specialized 
behavior to, for example, create and return appropriate s-t-e’s. A generalized symbol table algo-
rithm is then: 

Given an object in the parse graph, obj, and a (current) lexical context, context: 

(1) Send obj a “What new s-t-e's do you create?” message. The answer should be a set of <s-
t-e, name-space> pairs. For each pair in that set, 

(1a) Mark the s-t-e it as being created by this object. 
(1b) Mark obj as having created this s-t-e. 
(1c) Send a message to context, asking to enter this s-t-e in the appropriate 

name space. For certain languages, it may be necessary for context to 
merge the information of this s-t-e with that of an existing s-t-e (as, for 
example, when multiple declarations build the symbolic definition of a 
name). “Global” or “external” declarations may also imply adding the 
information to the root symbol table, rather than the current leaf. 

(2) Send obj a “What name do you use?” message. The answer should be either “none” or 
an <name, name space> pair. If a pair is returned, 

(2a) Ask context to look up this name in the appropriate name space, return-
ing an s-t-e. [For certain languages, (languages that declare by use) this 
may imply creating and entering an s-t-e for this item.] Mark obj as using 
that s-t-e. 

(3) Ask obj if it creates a new context. If so, create the context, noting the current context as 
its parent. Make that new context the current context. 

(4) Apply this algorithm to each child of obj, using the current context 
Rules and object-oriented programming provide a mechanism for taking a program in one 

language and converting it to a (usually semantically equivalent) program in another language. 
For all but the most trivial transformations, it has been our experience that purely automatic 
transformation does not produce maintainable output. Quality results require the interactive 
involvement of skilled software reengineers, both in the initial transformation process and in a 
hand-polishing post-transformation phase. Transformation, like many real AI applications, re-
quires balancing a multi-valued utility function, making tradeoffs between efficiency of execu-
tion, maintainability, faithfulness to the original source code, and fidelity to the style of the tar-
get language. Human reengineers can choose between alternative implementations, resolve 
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difficult cases, and apply real-world knowledge to the reengineering process. The state of the 
art of transformation systems resembles not so much the expert system, able to solve a problem 
by itself as the expert’s apprentice, able to perform useful (though often low-level and boring) 
work under the guidance of the skilled master. This apprentice lacks the overall world view 
required for comprehensive performance. Presently, automation can ease the task of quality 
program translation, but is far from eliminating human involvement.  

A concrete, low-level example may make this clearer. Given a variable declaration in the 
language C, we may need to transform that variable to Ada83. The simplest thing to do is to de-
clare a corresponding variable in Ada, but that may not work. The C program may use the 
variable’s address, illegal for stack-allocated simple Ada variables. This suggests implementing 
the variable as an Ada pointer to an object allocated from the heap (and changing all non-
address uses of that variable to follow the pointer). This will always work, but introduces both 
computational and intellectual complexity. For example, if the variable is declared in a recur-
sive subroutine, explicit allocation and deallocation will need to be done on the Ada variable. 
The deallocation becomes even more complex in the presence of exceptions, as exception han-
dlers must be built that handle the deallocation.  However, if the address of the variable is used 
only to achieve the effect of Ada in out and out parameters (a common cliché), a better resolu-
tion is to declare a simple variable and modify the corresponding subprogram declarations. If 
the variable’s address is only occasionally used for true pointer purposes, then the software 
reengineer will need to trade off among maintainability, execution efficiency and semantic fi-
delity. These kinds of transformational decisions require both a system-wide perspective on the 
program and human skill and judgment. 

4. Applications 

We have applied our tool set and reengineering skills to several dozen application projects. 
These have included projects for migrating software between platforms, translating systems 
from one language to another, converting code to support different databases or user inter-
faces, and creating a variety of custom system analyses. Table 1 lists a selection of these pro-
jects. Figure 5 illustrates the overall process of a reengineering application. We note that each 
stage of the process produces useful output and that many applications do not require follow-
ing the process to the end of the diagram.  
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Figure 5: The reengineering process 

 

 
Of these application projects, we have selected five for detailed discussion: standards 

checks, platform migration, language translation, system restructuring and database con-
version. These applications illustrate both the power and variety of reengineering tasks enabled 
by combining symbolic program manipulations with skilled software reengineers.  
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• Analyzed Ada for standards violations: 

• Migrated Honeywell Fortran to generic Fortran 

• Translated accounting application from COBOL to Ada 

• Restructured C application 

• Analyzed hierarchical DB for conversion to relational DB 

• Simplified assembler to a wide-spectrum language 

• Translated simulation application from C to Ada 

• Translated proprietary DB system to IMS 

• Restructured, Debugged, and fixed simulation software in VAX Fortran 

• Analyzed COBOL RDB application with embedded DBMS code 

• Analyzed embedded application VAX Fortran 

• Analyzed Data General Fortran 

• Translated systems software from C to Ada 

• Migrated Honeywell Fortran to Silicon Graphics: 

• Translated Data General Fortran to Standard C: 

• Analyzed HP data processing Fortran 

• Analyzed, restructured, and documented Fortran 

• Restructured Jovial flight software 

• Analyzed Unisys transaction-processing COBOL 

• Generated documentation for C 

• Analyzed flight-system CMS2-M 

• Translated Jovial system to Ada 
Table 1. Selection of InVision Software Reengineering Projects 

4.1. Standards checks 

Every sensible software development effort requires its programmers to conform to some cod-
ing standards. Standards help ensure code quality, prevent the use of language constructs that 
can produce erroneous results and encourage system development in a way that minimizes 
maintenance costs. Typical coding standards (for Ada) are: 

• Do not compare floating-point numbers with the built-in equality operator. 
• Out parameters should have values assigned to them on each and every logical path of 

the subprogram. 
• Avoid anonymous types  
• Eliminate unused object declarations (unused functions, procedures, and variables). 
• Use elsif whenever possible to clarify logic 
• Eliminate unused with statements 

Given the ASG for an Ada program, one can detect such coding standards violations by de-
scribing each violation as a pattern or program that tests for the violation, and then traversing 
the ASG looking for violations. These tests can be as simple as checking, for each instance in the 
class of equality tests, that its arguments are not types derived from floats to as complex as 
processing each control-flow path in the program, looking for unassigned out parameters. (Of 
course, we are limited to checking structural properties of the code. We can easily recognize 
violations of a standard forbidding GOTO statements or requiring assignment to every out pa-
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rameter on every path through a procedure. We can do little with a standard of the form, “Use 
meaningful variable names.”) 

We applied reengineering technology to detecting and reporting on project-specific coding 
standards violations for a large system. The project had 600K LOC (lines of code) of Ada and 
approximately 150K LOC of FORTRAN. Manual methods for auditing the code for standards 
conformance required 200 to 300 hours per 10K LOC module to detect violations of twelve Ada 
standards. Quality assurance for the project requested our support in reducing this manual ef-
fort. We customized our environment to perform the checks. This took approximately 200 
hours (including requirements definition, design, implementation, and testing). The Lockheed 
Martin InVision reengineering tool set then performed the coding standards checking for all 
twelve violations at the rate of 15 minutes per 10K LOC module. Program Software Quality 
Assurance estimates that the tool saved $3 million in quality assurance auditing costs and pro-
vides at least a 1000-fold productivity improvement over manual methods. 

4.2. Platform migration 

Lockheed Martin InVision performed a FORTRAN platform migration task, taking FORTRAN 
77 applications running on a Honeywell mainframe computer to FORTRAN 77 on a Silicon 
Graphics (SGI) workstation. A critical point about FORTRAN system migration is that no two 
FORTRAN dialects are identical. For example, every dialect seems to have its own syntactic 
representation of octal and hexadecimal constants, and some contain elements far beyond the 
ken of the FORTRAN standard [e.g., embedded, lexically scoped subroutines (GTE) or recur-
sion (Cray)]. In the case of the Honeywell to SGI migration, Honeywell FORTRAN 77 contains 
constructs such as repeat statements, constant statements, and multiple assignment statements. 
(Respectively, these translate to do statements, parameter statements, and sequences of single 
assignment statements in SGI FORTRAN.) More critically, the word sizes of the two machines 
are different: the Honeywell is a 36-bit machine, while the SGI is 32. 

An additional complication was the customer's creation of and use of a FORTRAN prepro-
cessor, PREPP. PREPP supports higher-level constructs such as begin-end blocks, logical and 
arithmetic case statements, and different types of repeat blocks with associated next and break 
statements. Our second task was to transform these PREPP/Honeywell systems to FORTRAN 
77. We preserved the maintainability of the translated systems by using comments and inden-
tation to retain the structured appearance of the original code. 

Lockheed Martin InVision created a set of customized tools to automate the task of translat-
ing Honeywell FORTRAN to Silicon Graphics FORTRAN and PREPP/Honeywell to a 
FORTRAN 77 dialect that is as platform independent as possible. This required customizing 
our tools to handle both Honeywell FORTRAN extensions and the PREPP preprocessor. We 
then transformed the resulting ASGs to express either the Honeywell extensions in SGI 
FORTRAN or the Honeywell/PREPP extensions in standard FORTRAN 77. For the Honeywell 
to SGI systems, the next step in the transformation process is to identify and convert the plat-
form dependent aspects of the code. These include calls to system routines and code dependent 
on the machine word size. A PREPP/Honeywell translation requires the definition of many 
new statement labels. The final step in this type of translation is eliminating the unused state-
ment labels and sequentially renumbering the remaining statement labels and their corre-
sponding references. 

The particular conversion involved the translation of 16 Honeywell FORTRAN systems to 
SGI FORTRAN 77, consisting of a total of 240K lines of code.  

4.3. Database conversion 

We are currently developing a tool to aid in the conversion of hierarchical IMS databases to 
relational models. In comparison with hierarchical systems, relational databases are more flexi-
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ble, often more efficient, and run on significantly less expensive hardware. We recognize, in 
our tool development, the critical role databases play in modern organizations, and the need to 
proceed cautiously in their conversion. Our first tool efforts are therefore devoted to under-
standing the organization of IMS database systems and suggesting translations, not their auto-
matic conversion. 

Database reengineering involves three phases: translating the database schema, converting 
the actual data, and reengineering the application code. (Commercial tools are available to 
support, to some extent, the first two of these. The last is the hardest, as the relational model 
may compel significant algorithmic revision of programs. The problem is compounded by the 
fact that organizations often have millions of lines of database applications.) 

Schema conversion. Straightforward conversion of IMS schema to relational models suggests 
mapping IMS segments to relations and links to foreign keys. However, such a conversion 
leads to inefficient applications—the system may be expending considerable energy on pre-
serving the order of a collection of records when no actual code is dependent on that order. 
Considering the actual access patterns in the application code can produce better results. Our 
basic conversion approach associates a relational table with each physical segment type. Its 
columns hold the segment data and, (where appropriate) the physical and logical parents. 
Pointers between segments are represented using foreign keys. The mapping from fields to 
columns is complicated by IMS overlapping and non-covering fields. Our resolution is to parti-
tion the data into non-overlapping segments and to express actions in terms of multiple col-
umns. 

Date conversion. The primary difficulty in converting the actual data is the necessity of main-
taining the proper logical parent links. The actual physical conversion can be either through a 
program that calls both the IMS and relational databases, or by encoding the IMS data in SQL 
statements or flat files and then reading that data in appropriately on the target machine. 

Application conversion. The most complex part of the conversion process is converting the 
actual code. The translation process relies on data- and control-flow analysis, literal propaga-
tion, cliché recognition in programming patterns, and report generation. Recognition of IMS 
call patterns is needed because it is not possible, or at least extremely inefficient, to convert in-
dividual IMS calls in isolation. Rather, we detect certain access patterns which can be efficiently 
translated as a group. Part of the difficulty in translating IMS calls in isolation is because IMS 
database applications contain explicit control structures to iterate through all segments match-
ing a given query. Arbitrary statement sequences can be mixed in with the database iteration, 
obscuring the actual operation. In a relational database, a single query retrieves all matching 
tuples. Cursors are used to traverse the query result. Similarly, one may have to write an ex-
plicit IMS loop to perform unitary relational operation, such as summing the values of a field of 
a set of predicate-satisfying records. We have written programs to recognize such clichés. 

We use control flow analysis to build a control flow graph of IMS database calls. Often, 
thousands of lines of COBOL can be reduced to less than a page of information. Even lacking 
further automation, such an analysis is helpful in maintaining the system code. 

Data flow analysis determines where a particular data item is used and to propagates static 
values. Determining the actual data used allows simplifying the SQL query to ask for only that 
data. 

Another IMS feature allows an application to sequentially traverse all data of a database. 
Such traversals cannot directly be translated into SQL as each SQL query can only return data 
of a single type. Polymorphic traversals need to be analyzed manually to determine a proper 
relational translation. 

InVision applied the first versions of these tools in the analysis and modernization of a 
COBOL/IMS inventory application composed of approximately 500,000 lines of application 
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code and 100 megabytes of data. This system and its application are described more completely 
by Polak, et. al. (Polak, 1995) 

4.4. Restructuring C 

Software system restructuring is the process of reorganizing the architecture of a software sys-
tem to accommodate a shift in the underlying design principles. C to Ada translation illustrates 
the need for performing software system restructuring. C systems consist of a set of independ-
ent functions and variables. Generally, structured design principles guide the creation of C sys-
tems. On the other hand, Ada is an object-based language with support for encapsulation, in-
formation hiding, generic packages and subprograms. The goal of producing maintainable Ada 
code requires us to restructure to-be-translated C systems to organizations more natural for 
Ada. 

InVision performs software system restructuring by automated tools supported by manual 
processes (Chu, 1992). The restructuring tool accepts a C system (consisting of a collection of C 
files) as input and parses the C code to produce an ASG. A semantic component then traverses 
the graph and collects primitive structural and semantic information. This information in-
cludes: (a) all the functions in the C system, (b) the calling relationships between these func-
tions, (c) the global variables of the system, and (d) the set-use relationships between the func-
tions and these variables. 

The overall strategy of the restructuring tool is heuristic and opportunistic. It travels up the 
calling hierarchy of the C system. As it moves from some function B to function A (when A 
calls B), the restructuring algorithm attempts to include B as part of A in an abstract com-
ponent. If B is called exclusively by A, then B can become part of A. On the other hand, if B is 
called by some other function C or shares global data with some function D (and hence has 
other dependencies) then two choices exist: (1) B and everything it depends on (the global data 
and D) can be considered to be a part of A, or (2) B can be made a part of C. This basic principle 
is applied recursively to build ever larger, more “abstract“ software components.  

We applied our software restructuring tool on two projects. The first consisted of 113K 
LOC comprising of 139 C functions. The system successfully restructured the system into 15 
independent components (roughly the same as subsystems), and 8 abstract data types. We used 
the system to restructure the C application into six hierarchical Ada packages with four nested 
Ada packages. The original C developers reviewed the output of the restructuring process and 
indicated that the new structure clustered related functions and variables into conceptually 
meaningful Ada packages. The second system consisted of 13K LOC and consisted of 177 C 
functions. In this system we located 7 abstract data types and restructured the system into 15 
Ada packages with 12 nested subpackages. 

4.5. Language translation 

InVision has performed several language translation projects, including conversion of C, 
COBOL, Jovial, and CMS-2 to Ada; FORTRAN to C; and FORTRAN to PL/1. Here we discuss 
the translation of a 50K LOC COBOL UNISYS OS-1100 logistics system into 35K LOC, func-
tionally equivalent Ada system (Gray, 1995). The application was a collection of 32 independ-
ent programs melded into a distributed system over several dozen sites. Difficulties of conver-
sion included the use of two different communication systems, two databases, operating sys-
tems calls, overlays, and unstructured and repetitious code. 

We converted this system into 35K LOC of Ada, replacing the GOTO’s with structured 
constructs, paragraphs and performs with procedures and functions, introducing strong typ-
ing, and generally producing a system that (save for some name choices) appears to have been 
developed originally in Ada. The process also revealed (and fixed) several bugs in the original 
systems and introduced a few algorithmic improvements. 
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This result was accomplished through a combination of automated and manual efforts. We 
created a number of transformations for taking COBOL constructs into Ada and applied these 
to the ASG representations of our COBOL programs. In practice, it is not worthwhile to expend 
effort developing transformations for little-used or difficult constructs. The result of the auto-
matic part of the conversion was thus a mixed COBOL–Ada program. Human skill was then 
applied to complete the translation and polish the results. 

We are also currently working on a research effort to convert assembly language to high-
level language (Morris, 1996). Our efforts to date have produced a converter that has automati-
cally reduces a certain assembly language programs to a wide-spectrum intermediate-
language. Typically, the converted programs are 30-40% of the size of the originals. The con-
version process recognizes clichés such as scanf, performs algebraic simplifications, resolves 
condition codes into real conditionals, discards assembler-specific “noise,” and introduces 
structured constructs such as loops in place of GOTO’s. This translation process relies on tech-
niques such as control and data flow analysis and pattern-matching. We are continuing to work 
on this technology to expand the class of simplifications it provides and the quality of output it 
produces. 

5. Related work 

Software reengineering is where software engineering was twenty years ago: an emerging 
field, with the beginnings of theory, tools and methodology. Software reengineering draws 
heavily on its intellectual parents: software engineering, programming languages, and process-
ing modeling, with a bit of an artificial intelligence influence. This paper has been about experi-
ence at applying automation to reengineering, automating various parts of the reengineering 
process, and the limits of automation. (Here we echo Yu (Yu, 1991), who argues that human 
expertise is critical for any but the most trivial reverse engineering task.) Automation of reen-
gineering has been a fertile field of research, though the “Holy Grails” of automated program 
translation and understanding remain as elusive as translation and understanding remain for 
natural language systems. In this section we touch upon other’s research related to the work 
described above. 

The most straightforward use of automation in software reengineering is for systems to 
(generically) aid in the understanding of existing software. Most work on program understand-
ing as been at either a lexical (token or string matching) or syntactic (parsing) level.  Relational 
code analyzers (e.g., The Dependency Analysis Toolset (Wilde, 1989), MasterScope (Teitelman, 
1981), Cscope (Steffen, 1985), AQL (Paul, 1994), and the C Information Abstraction System 
(Chen, 1990; Grass, 1992)) deduce some code-level structural relationships (e.g., who calls who, 
who sets who) from source code and provide a queryable database of these relations. The ap-
plication of Refine technology in this respect is illustrated by Boeing’s maintenance of an on-
line browser of a 200K LOC COBOL application (Newcomb, 1995a). Similar structural ideas are 
shown in the work of Cross and Hendrix in visualizing the control structures of Ada programs 
concurrently with their source (Cross, 1995), the MITRE assembly language workbench (Rob-
erts, 1994), and Andersen’s COBOL/SRE system to aid in understanding COBOL systems 
(Ning, 1994). 

While relational code analyzers capture the syntactic structure of systems, they do not pre-
sent a higher-level, conceptual view of code, systems, and architectures. The AI approach to 
greater system understanding is to attempt to recognize patterns in code (Kozaczynski, 1992; 
Kozaczynski, 1994; Wills, 1990; Rich, 1990; Letovsky, 1988; Ning, 1993; Ning, 1994, Quilici, 
1994). While such systems can deal with code, they lack attachment to the modeled domain. 
This theme has been explored by Biggerstaff et al. (Biggerstaff, 1994) who argue that parsing-
based technology lends itself to recognizing programming-oriented concepts (e.g., algorithms), 
but that application-oriented concepts (the coupling of the program to the domain) are inacces-
sible without human intervention. The synthesis of these approaches is seen in the work of 
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Quilici and Chin (Quilici, 1995), where a stereotypical design element recognition phase is fol-
lowed by interactive graphical display and queries. 

The particularly applications we have considered also have parallels in the literature. Re-
fine-based quality assurance systems include the work of Wells et al. (Wells, 1995) for Fortran 
and C, and, generically, the standards mechanism built into Refine (Markosian, 1994a). 

Database reverse engineering has been a fertile field with important economic implications. 
Hainaut et al. have develop an methodology of database reverse engineering and tools to sup-
port this methodology (Hainaut, 1993; Hainaut, 1995). They discuss the difficulty of extracting 
conceptual database descriptions from the messiness of non-toy code, and describe a transfor-
mational approach to extracting conceptual information from real programs. The Reverse En-
gineering in CASE Technology method (RECAST) takes COBOL source and deduces Struc-
tured Systems Analysis and Design Method (SSADM) documentation (Edwards, 1993; Ed-
wards, 1995). Yang and Bennett described a tool that (like our IMS work) considers actual code 
analysis in deriving entity-relation models from COBOL code (Yang, 1995). Jarzabek and Keam 
describe a reverse engineering tool for semi-automatic, knowledge-based and incremental re-
verse engineering of software, for example, extracting data models from COBOL flat files (Jar-
zabek, 1995). Their works recognizes that the particular design abstractions needed to under-
stand a program (e.g., control flow graphs, ASTs, calling graphs) are a function of the goals of a 
reengineering project. They also describe an SQL-like query language for browsing program 
structure. 

More popular than simple restructuring is the current attempt to recognize the “objects” in 
conventional code. Choi and Scacchi (Choi 1990), Hutchens and Basili (Hutchins, 1985) and 
Maarrek (Maarrek, 1988) search for subprograms grouped by data or calls. Yeh et al. (Yeh, 
1995) work from AST to infer abstract data types structurally from C code. Newcomb and Kotik 
(Newcomb, 1995b) apply a variety of structural and flow analysis techniques for object extrac-
tion of COBOL programs. Gall and Klösch (Gall, 95) combines structural analysis with domain 
data analysis to discover objects. Markosian et al. (Markosian, 1994b) describe their experience 
with Refine in developing tools to reverse engineer COBOL applications, including the data-
base elements. 

Automatic translation from legacy languages to high-level, portable systems remains an 
elusive goal. Bennett et al. (Bennett, 1992) describe the Maintainer’s Assistant, which employs 
formal program transformation techniques in support of maintenance activities. Like our work 
on assembler, Bennett et al. report on a system applied to the analysis of IBM 370 assembler by 
transformation into a wide-spectrum intermediate language. Andrews et al. describe work on 
maintaining non-syntactic, macro structures in doing a source-to-source translation from a 
proprietary Algol-like language to C (Andrews, 1996). One larger-scale experiment on auto-
mated translation was performed by the Naval Surface Warfare Center, Dahlgren Division 
(NSWCDD) (Samuel, 1995) which compared three automatic translators for CMS-2 to Ada 
(Cohn, 1991; Lock, 1994; Sampson, 1994). Within the context of legacy code modernization, 
Samuel and his coauthors make a telling point: translation systems, while somewhat useful, 
also required “A great deal of clean up to the produced code.” They add, “This finding illus-
trated the fact that not all CMS-2 code can or should be translated,” a simultaneous recognition 
of both the necessity of hybrid modernization techniques and the difficulty of translation. 
NSWCDD continues its efforts to improve translation technology. 

6. Closing remarks 

We have described InVision, its tool set, and some of the applications enabled by these tools. 
Our description has included a process of program manipulation (parsing, structural in-
terconnection, transformation and analysis, reporting and printing) and software renovation. 
This process is relies on AI technology and techniques. We have argued that this is an appro-
priate architecture for automating many of the tasks of software reengineering. We have also 
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presented examples of where even clever automated tools cannot produce a high-quality reen-
gineering result. In these situations, human intelligence is required to examine the particulars 
of the situation and select or create new structures accordingly.  
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